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ON THE STABILITY OF THE STATIONARY FRONT OF AN 

EXOTHERMIC REACTION IN A CONDENSED PHASE* 

P.A. AVDEYEV 

A system in the theory of combustion is considered in which the 
Arrhenius dependence of the rate of reaction on temperature is modified 

at temperatures close to the initial temperature in order to ensure the 
existence of a stationary front. Investigation of the stability of the 

stationary wave leads to the determination of the neutral curves and the 
amplitude equation. A coefficient, which defines the nature of the loss 

of stability, is calculated for the case when there is loss of stability 

with the occurrence of selfexcited oscillations of the plane front. 

This coefficient is always negative, which corresponds to soft 

excitation of selfexcited oscillations. The results obtained are 
compared with the data from numerical experiments /l-5/. 

The heat-conduction equation and the equation for the rate of a chemical equation in a 

coordinate system which is moving at a velocity (I have the form 

Here, Zll % and z3 are Cartesian coordinates, cf, is the rate of reaction, T and n are 

the temperature and concentration of the reagent, a and c are the thermal diffusivity and heat 

capacity, B is a pre-exponential term, T, is the initial temperature, T, is the combustion 

temperature, Q is the heat of reaction, E is the energy of activation, R is the gas constant 
and C,0 and p are dimensionless parameters of the problem. 

We shall modify the Arrhenius dependence (2) in the neighbourhood of X = 1 by putting 

it identically equal to zero when X>X* in order to ensure the existence of a stationary 

combustion wave. For this purpose, we shall solve the equation with X' = CX and 1" = CI; 

?gL Y’_Xx’, A& =pYpexp(+&) 

s -+ -CX, X' = exp (ps), Y’ = (1 + p) exp (ps) 

up to = s*(p,O), the magnitude of is a minimum, determine C 0) z (S*) 

and X,(p, 8) = X'(s,)/C. The dependence of p on the parameters of the problem, C and 0, is 

thereby determined and this also means the velocity (I of the stationary wave. The choice of 

the discontinuous modification of f is fixed by the definition of X,. 
p and 8 are subsequently taken as the independent parameters of the problem. The station- 

ary solution of (1) with the modified dependence (2) is now determined, when s <s*, by the 

soluton of (3): X, = Xl/C, Y, = Y’iC and, when S>S*, we obtain 

1-0 7 1, x, = 1 + (X, (s*) - 1) exp (s* - s) 

The stationary solution which has been found satisfies the conditions 

s = --cc, x, = I-" = 0, s =- --f+c=, x, = I-" = 1 (4) 

A second dependence ('- C(p, 0) is defined when a second modification of f is chosen 
from the condition for the existence of a stationary solution of (1) which satisfies (4). 

In order to determine C(p, 0) and the neutral curves, it is sufficient to use the 
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discontinuous modification of f which has been obtained (compare with /b/1, but the require- 
ments regarding the smoothness of the modification of f need to be increased for the correct 
determination of the Lyapunov coefficients. Calculations show that the dependence c (P, e), 
the neutral curves, the Lyapunov coefficient f&(0) and the other characteristics depend 
only slightly on the modifications obtained by a chance in the discontinuous modification 
which has been constructed in the neighbourhood of x =s*. 

The initial-boundary value problem (Q is a cylinder and 1% is the external normal to 
the boundary of the cylinder) 

is formulated in the case of Eq.(l). 
In order to study the neighbourhood of the stationary solution, we shall reduce problem 

(1). (5) to the local form /7f 

Here, 

Y = IV, VIT, u = x - x,, v = Y - Y,, Y, = [U,, V,lT, n = 

1, 2, 3 

The derivatives of b, with respect to X and Y are calculated for the stationary solution 
x0, y,. 

In order to study the stability of the state Y = 0 of Eq.(6), we obtain the eigenvalue 
problem 

Alj, = A%, 9 + 0, s -+ + cc, iS+!& tan = 0 (7) 

(II, = IU, DlT depends on x, y and s). This problem is solved in the same manner as in /6/. 
In solution, which corresponds to h = 0, always exists: $, = [dX,.‘ds, .dYvo!ds]T. 
Let us now apply the method of separation of variables to problem (7) 

@(r, y, s) = 'F(s) U'(‘r, Y)> Y = IEV llfT (8) 

and obtain the two problems 

Fig.1 Fig.2 



In order to solve problem (9), which depends on an additional parameter 1,; 0, let us 
define two bases of the solutions of (9) : q,- = (cplm, r+;-, rp-) and (T& = (TV+, q2+. CF:<) which are 
specified by their own asymptotic forms 

The two bases r+- and rp' are linearly dependent and the constant (3 x 3) matrix s (V 
is therefore defined as 

(Ent- y s nmvn+, m, n = 1, 2, 3 

The dispersion equation for h is determined in terms of its coefficients. In particular, 
in the case of a h which belongs to the first quadrant, we obtain /6/ 

A (A, p, 8, P) = s,,s,, - S,,S,, = 0 (12) 

The neutral curve p = p (El, II) is determined from the condition Reh(p, 6, CL)= 0 for the 
root of (12) with the maximum Reh.. If the imaginary part of this root differs from zero, 
then the function o(C), k)= Imk(p. 8, ~1 is defined when Reh = 0. The function C+ = S,,v; - 

kP,- which corresponds to the h which has been found determines the eigenfunction I# in 
accordance with (8). 

The results of the calculations are shown in Figs-land 2 and in Table 1. Cross-sections 
of the neutral surface p =p(fJ, t() when 0 = 0.04N - 0.03, where K = 1, . . . . 4 are shown in 
Fig.2. Here, on the neutral curves, the values of p decrease as the number N increases and, 
in particular, p* =p(8,0) also decreases (Table 1). The values of p,(8) correspond to 
the minimum on the neutral curves which is attained when p = p*(8). The frequencies <0* (0) 
and m* (0) are determined using ~(0, cl) with y. = p* and P = IL* respectively. 

The boundary of one-dimensional stability p =p* (0) is shown in Fig.1 in the 0, p plane 
(curve 2). A comparison with the data from /3/, where this curve is given in the form c'- 

9.lW(l + 2.58), shows that the relative erorr in the values ofp*does not exceed 0.015. The 
domain of physical values of the parameters C(p, e)< 1 is bounded by curve 1 in Fig.1. For 
fixed 0, the variation in p is bounded by the condition p<p,,, which corresponds to 

c<1 and the neutral curve p =p(p), determined for a given 0, therefore divides the 

strip 0< p<pmax in the IL, p plane into a domain of stability and a domain of instability. 
The values of p<p(p) correspond to the domain of stability. In the case when f3 - 0.01 
and n is not small, the neutral curve can be approximated by the parabola 
1.05p'. In Fig.2 the boundary of the physical domain of pman 

is indicate;f;;;h~i--,",~ -!~ 

0 = 0.09 and 0 = 0.13. 

Table 1 

3 
5 
7 
'J 

11 
13 

7.26 6.97 2012 6389 
7.16 F.88 2039 6414 
7.08 6.80 2065 Ii496 
7.02 6.73 2118 6GO8 
6.96 6.68 212Y 6729 
6.92 6.63 2141 6848 
6.88 6.58 2202 (iYti0 

1.146 
1.150 
1.158 
1.167 
f.li7 
1.1% 
I.196 

1.578 
1.582 
1.589 
1.605 
1.614 
I-G25 

1 I.645 i.I 

3.0 
4.2 
5.0 
.5.7 
6.3 
6.8 

Estimates of the Critical wave number k, 1-L when n O.O,j yield /l/ i, z 0.42 while, 
according to Table 1, k,z 0.45. According to the data on the period of the oscillations (/l/, 
1' -~ O.l"R), O* N 1.5 while, from Table 1, w,zl.ti. The value O* rl.2 is determined from the 
period of the one-dimensional oscillations (/3/, Fig.2) for 0=0.031X while, in the table, 
o* rr 1.15. The calculated values for the velocity of the wave front are therefore also con- 
sistent. 

Let us now return to a more detailed study of the loss of stability of a stationary wave 
in the case when auto-oscillations of the plane front occur, and to the calculation of the 
first Lyapunov coefficient. The loss in stability is associated with the mode p=o, u,=l 
and, in accordance with this, there is no dependence on the x and y coordinates and it is, 
in fact, a one-dimensional stability problem which is being investigated. 

The eigenvalue problem adjoint to (7) 
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concerning the scalar product 

is next required. 
Here 

I! 

A- a/as--cPx --X 
A*= -Q~ -aajas-c+ I 

The other boundary conditions for @* require satisfying the condition 

<A+,, +z*> - ($D A*&*) = 0 

by applying the method of separation of variables 

q* = q-J* (s)w (5, y), 'p* = FE*, q*1r 

we obtain 

We shall assume that the eigenvectors (7) and (13) form a bi-orthogonal basis 

<$nl, VclnV = Lz (15) 

In the case under consideration m,n =0,1,2 corresponds to i\, = 0 and A1 = X, &=X 
which are associated with neutral perturbations and the occurrence of auto-oscillations. We 
shall next exclude neutralperturbations <Y, qO*> = 0. Then, the loss in stability can be con- 
sidered in the central manifold, the cross-sections of which 0 = con&, p = const are two- 
dimensional /a/. In the case when Y belongs to the central manifold, we define the coordi- 
nates a and a: 

Y = a (z)$ + 5 (a) qi + yr’, a (z) = (Y, **> 

where Y' is uniquely defined by the Y specified on the central manifold ((Y', &,*) = 0), and 
9 and Y* correspond to R=h,. 

The contraction of problem (6) into the central manifold leads to a two-dimensional 
system in a coordinates. Its normal form /S/ has the representation 

a' = ha $ Ga ) a la (17) 

Here, terms of higher order with respect to a have been omitted and a derivative with 
respect to z is denoted by a dot. If it is only necessary todeterminethe basic contribution 
to the bifurcated periodic solution in powers of p -p*, there is no need to distinguish the 
normal variables a in (17) and the coordinates in the central manifold (16). Moreover, the 
contribution from Y' in (16) to the bifurcated solution is of the order of p-p* /9/ and 
the principal term in the expansion of the bifurcated solution in powers of p-p*, when 
account is taken of Eq.(17), has the form 

Y = 2Re {f--he' (p - p*)IGJ~~ei~~l/)} + 0 (p - p*) (W 

Here hp.' is the derivative of the real part of h with respect to p when P =p* and GA 
is the real part of G from (17). 

To calculate Gs we shall make use of the formal expansions for the periodic solution 
(6) with subsequent use of the Fredholm alternative /7/. 

The scalar product 

is introduced into the space of functions which are Zn-periodic with respect to t and the 
operator DA = -o,ai& + A,. Here, t = O@Z, 00 =i o* and A,, is the boundedness of the 
operator A on the boundary of stability p =p*. The adjoint operator with respect to the 
scalar product (19) DA* = o&at +A,*. 

The vectors, which are defined on the boundary of stability: x0 = qo, x = ei'g X = e-if;iiy 
where qo, 9 and i$ are eigenfunctions of the operator A,, belong to the kernel bf the 
operator D-4. Similarly, x0* =$@O*, x* =@ip*, 5‘ = emit$* belong to the kernel of D-A* where *Of, 

**and I$* are the solutions of the associated problem of the eigenvalues which, together with 
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$09 4) and $7, form the biorthogonal basis (15). 
Let us seek the bifurcated solution of Eq.(6) which is 2n-periodic with respect to 

t = 01 (F) 7 in the form of power series F = [Y, x*1 

Y' = ?i', (t) _1- ?Yf2 (2);%! + ., ,’ (F) - p* = cpl + F’)p&! I- (20) 

01 (i-.) - m,, = PWI 1 r%,.2! + 

In this case, the parameter 8 is assumed to be fixed everywhere. In order to exclude 
neutral perturbations, we require that [Y, x0*] = 0. On substituting (20) into (6), we find 
equations for determining the coefficients in the right-hand sides of (20) 

Il)nY1 = 0 

f).,Yz - %o,,dY,:dt -I- 2p,A’Y, + R (‘PI, YI) = 0 

DaYa - 3o,dY,/dt + 3p,A’YI - 3o,dYJdt + 3p,A’Yz + 

3p,R’ (Yu,, y,)f3p:A”Yl + 3R(Y,, Y2) + C (Y,, Y’,, Y,) 1 0 

(21) 

(22) 

(‘3) 

and so on. The operators A, B and C and their derivative with ;_espect to p, which are denoted 
by a prime, are considered on the boundary of stability p =p*. 

The unique solution of Eq.(21), which satisfies the auxiliary conditions [Y,, x0*1 = 0, [Y,, 
x*1=1, is 

YL=x+% (?I) 

The conditions for Eq.(22) to be solvable /7/ lead to the requirement that 01 = 0 and 
p1 = 0 and, in the case of Y,, we get 

DaYY, + B (Y,, Yl) = 0, [Y2. x0*1 = [Y,, x*1 = 0 (23) 

From the Fredholm condition for Eq.(23) to be solvable 

3(-to, $ p&‘) + 3 LB (Y,, Y,), r.*1 + IC (Y,, Y,, YJ, r.*1 = 0 (26) 

we find pz. By comparing (18) and (20) and using expression (24), we get 

GR = ‘I2 Re {LB (Y,, Y,). x*1 + 1/3 [C (Y,, Y,, Y,), x*1} (27) 

In order to determine G~,we find Y, from Eq.(22) 

y, = @Z, + 2, + e-2azZ3, Z, = [R,, S,lT, n = 0.2 

Substituting this into (25) we obtain two problems for Z, and Zz 

(“8) 

(29) 

d2Rolds2 + dR,lds - ‘D’xR, - %S, = 2F, 

dS,ids - @‘xR, - 41yS, = 2F, 

F, = @xx Eg + @XY (r;Fi + k, + @‘yurl’l 

d2R,lds2 + dR,lds - (@x + 2io,) R, - @YSZ = F, 

dS,ids - @xR, - (@,y + 2h,) S, = F, 

F? = cl)xx 52 + 2~XYEll + %YllZ 

The solution of problem (28) must satisfy the supplementary condition (Z,, 1&*)=0. We 
obtain 

(30) 

Here, M, and MS determine the contribution to Ga from the quadratic part B and cubic 
part C of Eq.(6). The results of the calculations of GR and shown in Table 1. Since the 
magnitude of GR is negative for all 8, there is always a soft perturbation of the selfexcited 
oscillations of the plane combustion front on passing across the boundary of stability. 

We will point out some details of the calculations. The solutions qO* and $* of Eqs.(14) 
corresponding to h= 0 and h -- zoo are determined by integration with respect to the given 
asymptotic forms when S---M 
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‘PO * N I(1 + p), -plT exp s, qP = 14% i p - io,, -PIT =P (na4 
ql,.? = 'ia Lf: (I/& - I%)" 

131) 

At the same time the solution c&,* becomes constant as s--i-(= and 'F* =lc, exp (!?lS), 6 exp 

(io,s)l=, where c1 and es are complex constants. Apart from the solution 'po* which has been 
found, there exists for any 0 a further solution To*= [I, --iIT for which Ccpo, %*> = 0. The 

calculations showed that CT. %*) = 0 in the case of the solutions (311 and, in constructing 

the biorthogonal system (15), there is no need for the second solution va* and the sole 
requirements <VG,'po*) -1 and ~~~~rp*)=l can be satisfied by the choice of the coefficients 
in the solutions (311. 

Eqs.f28) have the integral S,=: R,+dR&s. Eqs.(28) is integrated from s= -m, Z- 0, and 
Z, = Z - (Z,4kJ'>~o, which satisfies the condition (Z,, *u*> = 0 is then determined using the 
solution obtained. The magnitude of F, as a function of s had a V-shaped form. 

The unique solution of Eq.(29) was determined in the following manner. For the solutions 
of this equation the asymptotic forms when SW-&J are the same as in the case of the solutions 
of Eq.(9) when h=2io,,P=:O. Let us construct the solution Z, with the asymptotics forms 
s _ -M, ZI "CIvl- + c$&- (see (ll)), where 'pl-, va--.O when S---M and c1 and c1 are arbi- 
trary complex constants. By using the asymptotics forms (111 for 'P*+. 'I's+ and lp3*, it is 
possible to determine the coefficients of the expansion of the solution which has been found 
Za = kltp,* i k&Q "i k,~, +.The complex constants k,k, and k, depend on C, and c,. At the calcu- 
lations show, the constants c1 and C) are uniquely defined by the conditions k, = k, = 0 and 
it is thereby uniquely defined that Zz-O,~-ri_m. 

Substitution of the functions which have been found into relationships (30) determines 
Go. 

Let us now consider some more complex cases of loss of stability. In order to do this, 
information is required concerning the solutions of problem (lo), when Q is a circle of 
radius R, a periphery of length 1 or a square with a side of length 1. 

In the case of the circle theeigenvalues Pna,n = (j,,,,,,lR)*, m = 0, 1, . . ..n = 1, 2, . . . . when 
j,,, are the roots of the derivatives of the Bessel functions J,,'(j,d = 0. All the eigen- 
values Pm,= when 
tions 

The remaining 
In the case of 

the eigenfunctions 

mpO correspond to double modes (m, n) with o.~th~norma~i~ed eigenf&c- 

(1) @) &I,, n; w,1,, 7, } = Cn,,nIm(jm,nr/R)(1/Zcosmrp,1/2 sinmcp) 

c %ll, n = t. nil($n, ?I - m*)"* J,(im, n)], m # 0 

Po,* (P0,l = 0) are the single modes u+,% = J, (jo,,,r/A)/J, (jO,,). 
the periphery, the eigenvalues P,, =(Znn/1)', n = 1, 2, . . . are double with 

axnz w',) = $5eos7 , wjlB) = flsin * , n #O 

W@ = 1 corresponds to the single eigenvalue PO = 0. 
In the case of a square, there are identical eigenvalues among the eigenvalues ,u,7z,n = 

zz (m2 + n")&S (m, n = 0, 1, . ..) and the number of different modes which correspond to a given 
P determines the multiplicity of the eigenvalues. The eigenfunctions corresponding to the 
modes (m, 4 are 

wl% =I; w,,*O= I/'Zcos~, m = t,2,... 

We shall subsequently consider case when, apart from p =0, there is just a single one 
or double P# 0 to which one or a double h respectively with ha>0 corresponds. We 
shall denote the amplitudes and eigenfunctions for the single h by ffl and +& = 'pwl and for 
a double h by a2 and '& = 'pwl and +* = 'pi, where U+ and ui2 are the eigenfunctions (101 
for the given P, and 'p is the eigenfunction (9) for the given A.(P). For y=O, we denote 
the amplitude by a, and the eigenfunction by q0 = 'pO where the latter is the solution of 
Eq.(9) when h = h,. 

The analogue of the representation (16) in the case of a double h will be 

and, in the case of a single h, 
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Let us now consider of loss of stability when 0 = U.lX/l, 2/. According to the data 
in /l/, for the lower and upper stability boundaries we get I,* = 6.72 and I'* = (j.YS while, 
according to the data in Table 1, p* = 0.800 and p* = 7.08.1. In order to collate the 
numerical experiments /l, 2/ and the results of the solution of Eq.(9), the linear trans- 
formation of the values of p calculated from the data in /l, 2/ was carried out which 
established a match between the upper and lower stability boundaries. 

The result of this linear transformation is subsequently 
indicated as p. 

Imh 
The values of h. which correspond to the three 

different values of p as I_I is continuously varied are shown 
in Fig.3. The discrete values p -5 O.lN are indicated by the 
points. p = 6.895, N = 1, ., 4; p - li.Y8Y, N 2-m 1. ., 5 are 

2 indicated for the values p*<p(p*. p = 7.1YY, N = 0, . . ., 7 
are shown for values of p >p*. Large values of hrr correspond 
to large values of p. 

J.5 For a circular cross-section 51 when p :- 6.895. I{ II 8.i (/l/, 

y = 0.129) unstable modes (Z,l)-m (I.?, correspond to )L2: ps 
which are arranged in increasing order. The fundamental (0.Z) 
mode, 

I 
observed in /l/, with the greatest j.,, corresponds to 

lJ a. 05 0. f Reh 
a single 1~~ and to the eigenfunction of the fundamental mode 
11‘ :-- 'iK,, *. If only the fundamental mode were to be unstable 

Fig.3 then the representation (16) and the amplitude Eq.(17) with 
the solution a = &OZ would be valid. 

When p = 6.989, K r 8.7 (111, y = 0.128), the same fundamental mode with a larger number of un- 
stable modes (1,1)-(U). which correspond to F,....,I(~, was observed. 

When p = 7.199, R = 8.6 (121, v =- 0.126) the number of unstable modes (U.l)-(6,l) accompanying 
the observed fundamental mode was extended: PiI> ‘3 1’10. 

Let us now consider a simplified case, when only the zeroth and fundamental modes are 
unstable, in the representation (33) qU = cra,$, o"~,~. The normal form of the amplitude 

eqllation 

has the solution a0 = 0, a1 = EP"~ which is stable when Re (h, + G,,E~)(O. 

When p = 7.199, R = 4.0 ([Z], y = 0.126), the unstable modes (6*1)-_(U) correspond to PO> PI 
and P2. The (i,i) fundamental mode corresponds to a double pl. 

Let us now consider an example when only the zeroth and fundamental modes are unstable 

in the representation (32), I)” = vu. *I = &i, lcz = q~@~. The normal form of the amplitude equation 

a,' - ii,a, = Ga, l u,, l* + Iipl (a) a0 (35) 
CZI‘ - lia, = Ap, (a) a, + dp, (a) up + Da, 1 (lo 12 
a*’ - Ira, = --1Bp, (a) 01 + Ap, (a) (I* $ Do, l 0” 11 

(PI = l Q1 12 + l a* 12, pz = i (al@% - %a*)) 

was obtained in the following manner. The normal form, which contains all the resonance 

monomials of order 3, was first determined. Since the initial system (6) permits the group 
of motions of a circle 0 (2), the action of this group on the cross-section of the central 
spectrum leaves the amplitude equations unchanged. The action of the group in the finite 
dimensional amplitude space induces transformations of the normal amplitudes with regard to 
which the normal forms of the amplitude equations must be invariant. This leads to constraints 
on the coefficients of a normal form among which only five independent forms (35) remain. 
Eq.135) has a solution in the form of single-helix waves 

a, = 0, {a,, (2.J = ~e~"'{l!flZ, +iifiz) (36) 

(the choice of sign corresponds to right-handed and left-handed spirals). 

When p = 7.199, R z 6.7 (121, v = 0.126), the unstable modes correspond to pO....,pII.The fundamental 

C&l) mode corresponds to a double pP The solution which has been found has approximately 
the same form as in the example (32), (36) which had been considered above but has the eigen- 
functions $!1 = C+? & = C&21' which corresponds to a double-helix. 

Similar states are observed in the case when the cross-section Q is a periphery of 
length 2. 
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When 8 = 0.0327 ,p-9.49, 1~5.75 (/4/), the modes PO and P, are unstable. The fundamental 
mode corresponds to a double PI. The representation (32), with $0 = 'pa, $1 = Q@', $3 = 'F"?', 

and Eq.(35) describe the loss in stability as in the case of a circular Cross-Section 9. The 

single-helix wave which is observed corresponds to solution (36). 
When 9 = 0.0327, p = 9.49, 2~ 11.5 (/5/, Fig.1) ,the modes pO, . . . pa are unstable. The fundamental 

mode corresponds to a double kl. The observed solution is the same as when 1 = 5.75. 
When Q= 0.1,p=8.04, 1~47.3 (151, Fig.2), the modes ~O,...,~,O are unstable. The funda- 

mental mode corresponds to a double p2. The observed solution of the form of (32), (36) with 

$$I ='F'L.in, qa = 'p"?) is a double-helix wave. 

Let us now consider cases of loss of stability when Q = 0.05,p N 7.199 (/2/, y = 0.1X) for a 
square cross-section of various sizes. 

When 2 N 6.7 < the modes t%, Pl and p1 are unstable. The fundamental (O,l) and (1,O) 
modes correspond to a double kl. The simplest case is when only the zero and fundamental 
modes are unstable and, in (32), % = 'PO,% = 'p&,1> 1Va = 'p*1,0. The normal form of the amplitude 
equation, when account is taken of the symmetry of a square 

(10. - &a, = Ga, 1110 1% + If (Ia1 1% + I % 1%) a, (37) 
(11' - ha, = Aal%i, + Ba,%, + co, 1 a* 12 + Da, 1 Ilo \a 

ax’ - ha, = Aa,%, + Ba,%, + Ca, 1 aI I* + Da, 1 a, I2 

has a solution of the form of (36) when the lower sign is chosen which corresponds to the 
observed state. 

When l= 13.4, the modes P~,...,~Ls are unstable. The (0,2) and (2,0) fundamental modes 
correspond to a double lta. If just the zero and fundamental modes were to be unstable, the 
loss of stability could be described by relationships (32), (37) with q0= 'P~,$~=Qx+, qz= 'pi+. 

In this case, the resulting solution is a0 = 0, al = aa= $mr/l/j. 

When 1 = 9.38, the modes po,...,Pr are unstable. The fundamental (i,1) mode corresponds 
to a single F~. If only the zero and fundamental modes with $'I= owl,1 are taken into con- 

sideration, the loss in stability is described by Eq.(34). The observed state corresponds 
to the solution a, = 0. al = ee'"'. 

In conclusion we note that the determination of the coefficients of the normal forms for 
the various cases of loss of stability is a fundamental problem. Using the known coefficients, 
it is possible to solve the problem of the stability of a branching solution. 
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